On (*r, c*)-constant circulants

Xandru Mifsud (joint work with Yair Caro)

30th British Combinatorial Conference Queen Mary, University of London

1st July 2024

Introducing (*r, c*)-constant graphs

Definition

A graph *G* is an (*r, c*)-constant graph if, and only if, every vertex *v* has degree *r* and exactly *c* edges in the open-neighbourhood.

- This is a natural extension of *graphs with constant-link*, which are those *r*regular graphs such that the subgraphs induced by the open-neighbourhoods of any two vertices are isomorphic. Therefore every open-neighbourhood has a constant number *c* of edges.
- Similarly, (*r, c*)-constant graphs extend the notion of (*r, b*)-regular graphs, which are those *r*-regular graphs such that every open-neighbourhood is induces a *b*-regular subgraph. Therefore, once again, every open-neighbourhood has a constant number *c* of edges.
- Notation: By *e*(*v*) we will denote the number of edges in the subgraph induced by the open-neighbourhood of a vertex *v*.

Figure: Interesting sub-families of graphs within the family of (*r, c*)-constant graphs.

Figure: An example of a (4*,* 2)-constant graph, which is also a planar graph.

- **•** The subgraph induced by the open-neighbourhood of u is $2K₂$ (highlighted in red), whilst the subgraph induced by the open-neighbourhood of *v* is $K_1 \cup P_3$ (highlighted in blue), and therefore they are not isomorphic.
- Also, in the case of *v* the open-neighbourhood does not induce a regular graph.
- Hence this is an example of a (planar) (*r, c*)-constant graph that is neither a graph with constant-link nor an (*r, b*)-regular graph.
- The family of (r, c) -constant graphs was recently introduced to demonstrate the existence of *k*-flip graphs, which Josef Lauri talks about in his presentation.
- A number of results on (*r, c*)-constant graphs have been established, such as that for $r \ge 1$ and $0 \le c \le \frac{r^2}{2} - 5r^{\frac{3}{2}}$, there exists an (r, c) -graph. The proof is constructive and follows from the feasibility of line graphs problem, which Christina Zarb talks about in her presentation.
- Together with Yair Caro, the existence problem of planar and circulant (*r, c*) constant graphs was studied, as well as the problem of establishing the smallest order of an (*r, c*)-constant graph for given values *r* and *c*.

Today we will focus on the existence and construction of (r, c) -circulants...

Existence and construction of (*r, c*)-circulants

- Consider the circulant Circ (*n, S*) where *n* is the number of vertices and *S* is the set of *jumps* $i \in S$ where $1 \leq i \leq \frac{n}{2}$. **Note:** Circ $(n, S) = \text{Cay}(\mathbb{Z}_n; S \cup S^{-1})$.
- We are interested in the existence problem of (*r, c*)-constant graphs which are circulants (termed as (*r, c*)-circulants).
- The motivation for this problem is two-fold: (*r, c*)-circulants are useful for constructing small 2-flip graphs, and exhaustive computer searches yielded that in many cases the smallest order of an (r, c) -graph is realised by a circulant.

Problem

Given a non-negative integer *c* and a positive integer *r*, does an (*r, c*)-circulant graph exist?

Figure: The (4, 3)-circulant Circ $(7, {1, 2})$ where $c \equiv 0 \pmod{3}$

Figure: The $(4, 1)$ -circulant Circ $(9, {1, 3})$ where $c \equiv 1 \pmod{3}$

We briefly illustrate the ideas behind constructing (*r, c*)-circulants for a given *c*.

Let k, j be integers such that $k > j \geq 0$. Consider:

• $S_{k,i} = \{1, ..., k-1, k+j\}$ and Circ $(n, S_{k,i})$ which is 2k-regular.

For every vertex *v*:

$$
e(v) = \begin{cases} 3\binom{k-1}{2} + 3(k-1-j) + 1, & n = 3(k-1) \\ 3\binom{k-1}{2} + 3(k-1-j), & n \text{ sufficiently larger than } 3(k-1) \end{cases}
$$

Observe that for appropriate choices of *n*, *k* and *j* we can construct circulants with $e(v) = c$ for all $c = 0, 1 \pmod{3}$.

We can increase the degree by 2*l*, simply by adding to $S_{k,i}$ the first *l* terms of some arithmetic progression with difference $d = k + j + 1$ and a suitably large *n*. Let $R_{k,i,l}$ be the set containing these *l* terms.

Observe that the choice *d* **is such that in Circ (***n***,** $S_{k,i} \cup R_{k,i,j}$ **) the number** of edges $e(v)$ is the same as in Circ $(n, S_{k,i})$. In other words, we are only increasing *r* (controlled by *l*) for the *c* associated with *k* and *j*.

As a consequence of this construction (with some more involved arguments), we arrive at the following theorem:

Theorem

Let c, *r be a* positive integers such that $c \equiv 0,1 \pmod{3}$ and $r \ge 6 + \sqrt{\frac{8c-5}{3}}$. *Then an* (*r, c*)*-circulant graph exists.*

A similar construction can also be used to construct $(r, 0)$ -circulants for $r > 1$.

We have some answers to our problem, **except for the case when** $c \equiv 2 \pmod{3}$!

In fact, we have seen examples and constructions of (r, c) -circulants in the case when $c \equiv 0, 1 \pmod{3}$, but none for the case when $c \equiv 2 \pmod{3}$.

Here lies a surprising result about circulants...

We first note that following result on (*r, c*)-constant graphs (not necessarily limited to circulants), which establishes that the case $c \equiv 1, 2 \pmod{3}$ may possibly arise only when $n \equiv 0 \pmod{3}$:

Lemma

If G is an (*r*, *c*)*-constant graph on* $n \equiv 1, 2$ (mod 3) *vertices, then* $c \equiv 0$ (mod 3)*.*

Proof.

- Let *t*(*G*) denote the number of triangles in *G*.
- **E** Every vertex *v* has $e(v) = c$ and hence *v* is a vertex on exactly *c* triangles.
- Counting (with multiplicities) over all vertices, we get *cn* triangles.
- On the other hand, every triangle is counted this way three times, hence this double counting gives $t(G) = \frac{cn}{3}$.
- But as *n* ≡ 1*,* 2 (mod 3) it follows that *c* ≡ 0 (mod 3).
- As a consequence of the previous lemma, an (r, c) -circulant on $n \equiv 1, 2 \pmod{3}$ vertices must satisfy $c \equiv 0 \pmod{3}$. Therefore all that remains is to consider circulants on $n \equiv 0 \pmod{3}$ vertices.
- It turns out that for a circulant *G* on *n* vertices, if *n* ≡ 0 (mod 3) then $e(v) \equiv 0, 1 \pmod{3}$. In particular:

Lemma

For any vertex *v* in Circ(*n*, *S*), $e(v) \equiv 0 \pmod{3}$ *except when* $n \equiv 0 \pmod{3}$ *and* $\frac{n}{2} \in S$, *in* which case $e(v) \equiv 1 \pmod{3}$.

This settles the existence problem for (r, c) -circulants when $c \equiv 2 \pmod{3}$!

Theorem

No (r, c) -circulant exists for $c \equiv 2 \pmod{3}$.

The (*r, c*)-graph database

- We anticipate that (*r, c*)-constant graphs may become useful in a number of areas, and therefore we have made publicly available an exhaustive collection of (*r, c*)-constant graphs, along with tools for Mathematica and McKay's geng for checking and generating such graphs.
- Presently, the database contains 1794 distinct (r, c) -graphs for $c > 0$, with *r* ranging from 2 to 776. Additionally, there are 1887 non-bipartite (*r,* 0)-graphs, as well as 1007 planar (r, c) -graphs (51 of which have $c > 0$). In the case that a graph has a constant-link, we also give what it is.

Database

<https://rcgraphs.research.um.edu.mt>

Thanks for attending!