Graphs with Independent Core Vertices A Special Case: C_{Ak} -free Bipartite Graphs

L-Università ta' Malta Faculty of Science Department of Mathematics

Nullity Relations on Graphs with Independent Core Vertices

Xandru Mifsud (Speaker), Irene Sciriha, James Borg

Correspondence: xandru.mifsud.16@um.edu.mt

January 31st, 2019

Overview

- Graphs, their Adjacency Matrix, and Core Vertices
- Main Results
- A Dimensional Result
- 2 Graphs with Independent Core Vertices
 - Nullity Relations with Q
 - \bullet Characterisation on Structure of ${\bf Q}$

Graphs, their Adjacency Matrix, and Core Vertices Main Results A Dimensional Result

Graphs, their Adjacency Matrix, and Core Vertices

Xandru Mifsud (Speaker), Irene Sciriha, James Borg Nullity Relations on Graphs with Independent Core Vertices

 $\begin{array}{c|c} & & & & \\ & &$

Core Vertices

The *core vertices* (red) of a graph correspond to non-zero entries in the kernel-eigenvectors. Their set is denoted by CV.

Core-Forbidden Vertices

The *core-forbidden vertices* (grey and white) to the zero-entries in the kernel-eigenvectors.

- **(**) neighbours of a core vertex (grey) are denoted by N(CV)
- 2 remainder (white) are denoted by CFV_{dist}

These define a partitioning of the vertex set,

$$V(G) = CV \stackrel{.}{\cup} N(CV) \stackrel{.}{\cup} CFV_{dist}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction	Graphs, their Adjacency Matrix, and Core Vertices
Graphs with Independent Core Vertices	
A Special Case: C4k-free Bipartite Graphs	A Dimensional Result

Adjacency Matrix Partitioning

A graph with *independent* core vertices has a $|CV| \times |CV|$ block matrix $\mathbf{0}_{CV}$ of zeros. The vertex partitioning results in a partitioning of the adjacency matrix,

$$\mathbf{A} = \begin{bmatrix} \mathbf{0}_{CV} & \mathbf{Q} & \mathbf{0} \\ \hline \mathbf{Q}^{\mathsf{T}} & \mathbf{B} \end{bmatrix}$$

where **Q** is $CV \times N(CV)$.

Main Results

Main Result 1

Let G be a graph with independent core vertices. Then $\eta(G) = |CV| - \operatorname{rank}(\mathbf{Q}).$

Main Result 2

Let G be a graph with independent core vertices. **Q** has linearly independent columns if and only if $\eta(G) = |CV| - |N(CV)|$.

Main Result 3

Let G be a bipartite graph with independent core vertices. If G does not contain any C_{4k} cycle, then the columns of **Q** are linearly independent if and only if $\mu = |N(CV)| + \frac{|Inv|}{2}$.

Graphs, their Adjacency Matrix, and Core Vertices Main Results A Dimensional Result

イロト イポト イヨト イヨト

-

Introduction

Graphs with Independent Core Vertices A Special Case: C_{4k} -free Bipartite Graphs Graphs, their Adjacency Matrix, and Core Vertices Main Results A Dimensional Result

<ロト <部ト < 注ト < 注ト

э

A Dimensional Result

Proposition 1.1

Let
$$\begin{bmatrix} \mathbf{B}_{k_1 \times h_1} \\ \mathbf{C}_{k_2 \times h_1} \end{bmatrix}$$
 be an $(k_1 + k_2) \times h$ submatrix of the $(k_1 + k_2) \times (h_1 + h_2)$ matrix \mathbf{M} . Then,
 $h_1 = \operatorname{rank}([\mathbf{B}^{\mathsf{T}}|\mathbf{C}^{\mathsf{T}}]) + \eta\left(\begin{bmatrix} \mathbf{B} \\ \mathbf{C} \end{bmatrix}\right)$

Xandru Mifsud (Speaker), Irene Sciriha, James Borg Nullity Relations on Graphs with Independent Core Vertices

Nullity Relations with ${\bf Q}$ Characterisation on Structure of ${\bf Q}$

Nullity Relations with **Q**

Lemma 2.1

Let G be a graph with independent core vertices. Then $\eta(\mathbf{Q}^{\intercal}) = \eta(\mathbf{A}) = \eta(G)$.

Theorem 2.2

Let G be a graph with independent core vertices. Then $\eta(G) = |CV| - \operatorname{rank}(\mathbf{Q}).$

Proof.

The dimensional result immediately gives,

$$|CV| = \operatorname{rank}\left([\mathbf{0}|\mathbf{Q}|\mathbf{0}]\right) + \eta\left([\mathbf{0}|\mathbf{Q}|\mathbf{0}]^{\mathsf{T}}\right) = \operatorname{rank}\left(\mathbf{Q}\right) + \eta\left(\mathbf{Q}^{\mathsf{T}}\right)$$

Rearranging and applying Lemma 2.1, $\eta(G) = |CV| - \mathsf{rank}(\mathbf{Q})$.

ヘロン 人間 と 人 回 と 人 回 と

Lemma 2.3

The columns of \mathbf{Q}^{T} are linearly dependent and rank $(\mathbf{Q}) < |CV|$.

Proposition 2.4

Let G be a graph with independent core vertices. If $|CV| \leq |N(CV)|$, then the columns of **Q** are linearly dependent.

Proof.

By rank(\mathbf{Q}) < |CV| and the given, rank(\mathbf{Q}) < $|CV| \le |N(CV)|$, and thus linear dependence follows.

Lemma 2.5

Let G be a graph with independent core vertices. Then $\eta(G) > 0$.

イロト イポト イヨト イヨト 二日

Theorem 2.6

Let G be a graph with independent core vertices. **Q** has linearly independent columns if and only if $\eta(G) = |CV| - |N(CV)|$.

Proof.

Let **Q** have linearly independent columns. By the contra-positive of Proposition 2.4, linear independence gives |N(CV)| < |CV|. Because **Q** has full rank, rank(**Q**) = |N(CV)|. Theorem 2.2 gives $\eta(G) = |CV| - \operatorname{rank}(\mathbf{Q})$, hence $\eta(G) = |CV| - |N(CV)|$.

Conversely, let $\eta(G) = |CV| - |N(CV)|$. Since $\eta(G) > 0$, |N(CV)| < |CV|. Also by $\eta(G) = |CV| - \operatorname{rank}(\mathbf{Q})$, $\operatorname{rank}(\mathbf{Q}) = |N(CV)|$. Then \mathbf{Q} has full column rank and thus linear independence follows.

イロト イポト イヨト イヨト 二日

Nullity Relations with Q Characterisation on Structure of Q

Characterisation on Structure of **Q**

Xandru Mifsud (Speaker), Irene Sciriha, James Borg

Nullity Relations on Graphs with Independent Core Vertices

Q w/ linearly independent columns				
CV , N(CV)	Example	$\eta(G)$	CV	rk(Q)
<i>N</i> (<i>CV</i>) < <i>CV</i>		2	8	6

$$\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

э.

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Graphs with Independent Core Vertices}\\ \mbox{A Special Case: \mathcal{C}_{4k}-free Bipartite Graphs} \end{array}$

A Special Case: C_{4k} -free Bipartite Graphs

Lemma 3.1 [Gutman & Borovićanin, 2011]

Let G be a bipartite graph on n vertices. If G does not contain any C_{4k} cycle, then $\eta(G) = n - 2\mu$, where μ is the size of its maximal matching.

Theorem 3.2

Let G be a bipartite graph with independent core vertices. If G does not contain any C_{4k} cycle, then the columns of **Q** are linearly independent if and only if $\mu = |N(CV)| + \frac{|Inv|}{2}$.

イロト イポト イヨト イヨト 二日

Proof.

Firstly, we note that n = |CV| + |N(CV)| + |Inv|. Let **Q** have linearly independent columns. Thus $\eta(G) = |CV| - |N(CV)|$ and by Lemma 3.1 it follows that,

$$|CV| - |N(CV)| = |CV| + |N(CV)| + |Inv| - 2\mu$$

Rearranging gives us $\mu = |N(CV)| + \frac{|Inv|}{2}$, as desired.

Conversely, let $\mu = |N(CV)| + \frac{|Inv|}{2}$. Once again by Lemma 3.1, $\eta(G) = |CV| - |N(CV)|$. Theorem 2.6 gives us that linear independence of the columns of **Q**, concluding the proof.

Question 3.3

When does a bipartite graph have independent core vertices?

Xandru Mifsud (Speaker), Irene Sciriha, James Borg

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >