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Graphs, their Adjacency Matrix, and Core Vertices
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η(G ) = 2
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Core Vertices

The core vertices (red) of a graph correspond to non-zero entries
in the kernel-eigenvectors. Their set is denoted by CV .

Core-Forbidden Vertices

The core-forbidden vertices (grey and white) to the zero-entries in
the kernel-eigenvectors.

1 neighbours of a core vertex (grey) are denoted by N(CV )

2 remainder (white) are denoted by CFVdist

These define a partitioning of the vertex set,

V (G ) = CV ∪̇ N(CV ) ∪̇ CFVdist
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Adjacency Matrix Partitioning

A graph with independent core vertices has a |CV | × |CV | block
matrix 0CV of zeros. The vertex partitioning results in a
partitioning of the adjacency matrix,

A =

 0CV Q 0
Qᵀ

B
0


where Q is CV × N(CV ).
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Main Results

Main Result 1

Let G be a graph with independent core vertices. Then
η(G ) = |CV | − rank(Q).

Main Result 2

Let G be a graph with independent core vertices. Q has linearly
independent columns if and only if η(G ) = |CV | − |N(CV )|.

Main Result 3

Let G be a bipartite graph with independent core vertices. If G
does not contain any C4k cycle, then the columns of Q are linearly

independent if and only if µ = |N(CV )|+ |Inv |
2

.
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A Dimensional Result

Proposition 1.1

Let

[
Bk1×h1

Ck2×h1

]
be an (k1 + k2)× h submatrix of the

(k1 + k2)× (h1 + h2) matrix M. Then,

h1 = rank ([Bᵀ|Cᵀ]) + η

([
B
C

])
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Nullity Relations with Q

Lemma 2.1

Let G be a graph with independent core vertices. Then
η (Qᵀ) = η (A) = η(G ).

Theorem 2.2

Let G be a graph with independent core vertices. Then
η(G ) = |CV | − rank(Q).

Proof.

The dimensional result immediately gives,

|CV | = rank ([0|Q|0]) + η ([0|Q|0]ᵀ) = rank (Q) + η (Qᵀ)

Rearranging and applying Lemma 2.1, η(G ) = |CV |− rank(Q).

Xandru Mifsud (Speaker), Irene Sciriha, James Borg Nullity Relations on Graphs with Independent Core Vertices



Introduction
Graphs with Independent Core Vertices

A Special Case: C4k -free Bipartite Graphs

Nullity Relations with Q
Characterisation on Structure of Q

Lemma 2.3

The columns of Qᵀ are linearly dependent and rank(Q) < |CV |.

Proposition 2.4

Let G be a graph with independent core vertices. If
|CV | ≤ |N(CV )|, then the columns of Q are linearly dependent.

Proof.

By rank(Q) < |CV | and the given, rank(Q) < |CV | ≤ |N(CV )|,
and thus linear dependence follows.

Lemma 2.5

Let G be a graph with independent core vertices. Then η(G ) > 0.
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Theorem 2.6

Let G be a graph with independent core vertices. Q has linearly
independent columns if and only if η(G ) = |CV | − |N(CV )|.

Proof.

Let Q have linearly independent columns. By the contra-positive
of Proposition 2.4, linear independence gives |N(CV )| < |CV |.
Because Q has full rank, rank(Q) = |N(CV )|. Theorem 2.2 gives
η(G ) = |CV | − rank(Q), hence η(G ) = |CV | − |N(CV )|.

Conversely, let η(G ) = |CV | − |N(CV )|. Since η(G ) > 0,
|N(CV )| < |CV |. Also by η(G ) = |CV | − rank(Q),
rank(Q) = |N(CV )|. Then Q has full column rank and thus linear
independence follows.

Xandru Mifsud (Speaker), Irene Sciriha, James Borg Nullity Relations on Graphs with Independent Core Vertices



Introduction
Graphs with Independent Core Vertices

A Special Case: C4k -free Bipartite Graphs

Nullity Relations with Q
Characterisation on Structure of Q

Characterisation on Structure of Q

Q w/ linearly dependent columns
|CV |, |N(CV )| Example η(G ) |CV | rk(Q)

|CV | = |N(CV )|
1

2

3

8

5 6

7

4

1 4 3

|CV | < |N(CV )| 12

3

4

5

1 2 1
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Q w/ linearly independent columns
|CV |, |N(CV )| Example η(G ) |CV | rk(Q)

|N(CV )| < |CV |
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2 8 6

Q =



1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1


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Lemma 3.1 [Gutman & Borovićanin, 2011]

Let G be a bipartite graph on n vertices. If G does not contain any
C4k cycle, then η(G ) = n − 2µ, where µ is the size of its maximal
matching.

Theorem 3.2

Let G be a bipartite graph with independent core vertices. If G
does not contain any C4k cycle, then the columns of Q are linearly

independent if and only if µ = |N(CV )|+ |Inv |
2

.
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Proof.

Firstly, we note that n = |CV |+ |N(CV )|+ |Inv |. Let Q have
linearly independent columns. Thus η(G ) = |CV | − |N(CV )| and
by Lemma 3.1 it follows that,

|CV | − |N(CV )| = |CV |+ |N(CV )|+ |Inv | − 2µ

Rearranging gives us µ = |N(CV )|+ |Inv |
2

, as desired.

Conversely, let µ = |N(CV )|+ |Inv |
2

. Once again by Lemma 3.1,

η(G ) = |CV | − |N(CV )|. Theorem 2.6 gives us that linear
independence of the columns of Q, concluding the proof.

Question 3.3

When does a bipartite graph have independent core vertices?
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